MCAT DUMP SHEET

Physics: mechanics and thermodynamics

Work, Energy, and Power

Work = $W = Fdcos\theta$

Kinetic energy = KE = $\frac{1}{2}$ mv²

Work-energy theorem = $W_{net} = \Delta KE$

Gravitational potential energy = PE_{grav} = mgh

Total mechanical energy = E = KE + PE

Power =
$$P = \frac{W}{t} = FV$$

Gravity

 $F_{grav} = mg$

 $F_{grav} = \frac{G(Mm)}{r^2}$

 $g = \frac{G(M)}{r^2}$

g (Earth) $\approx 10 \text{ m/s}^2$

Torque

 $\tau = rF \sin\theta$

Kinematics

Constant acceleration = $v = v_0 + at$

$$d = v_0 t + \frac{1}{2} a t^2$$

Projectile motion

Horizontal component

 $x = v_{x0}t$

 $V_X = V_{XO}$

 $a_x = 0$

Vertical component

$$y = v_{y0}t - \frac{1}{2}gt^2$$

$$v_v = v_{xo} - gt$$

$$a_v = -g$$

Friction

 $F_{\text{static}} \le \mu_s F_N$

 $F_{kinetic} = \mu_k F_N$

Inclined plane

 θ = angle of incline

 $F_{g parallel} = mg sin\theta$

 $F_{g perpendicular} = mg cos\theta$

Circular motion

Centripetal acceleration = v_0 + at

Centripetal force = $F_c = ma_c = \frac{mv^2}{r}$

Thermodynamics

First law = $\Delta E = Q - W$

Work = $W = P\Delta V$

Heat capacity = $Q = C\Delta T$

Specific heat capacity = Q = mc Δ T

Fluids

Density =
$$\rho = \frac{\text{mass}}{\text{volume}} = \frac{\text{m}}{\text{v}}$$

Specific gravity = SG =
$$\frac{\rho}{\rho_{\text{water}}}$$

Pascal's law = P =
$$\frac{F}{A}$$

Gauge pressure = P_{gauge} = P - P_{atm}

Pascal's law =
$$\frac{F_1}{A_1} = \frac{F_2}{A_2}$$

Continuity equation = $A_1v_1 = A_2v_2$

Flow rate = Q = Av

Buoyant force = $F_{buoyant}$ = $F_{fluid} \times V_{submerged} \times g$